🪴 Aradinka Digital Garden

Search

Search IconIcon to open search

ds-plotting

Last updated Nov 23, 2022

# Read csv

# Plotting in notebook setup

1
2
3
4
5
import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

# Define Your Viz Goals

# Plot Option Based on Data Types

# Line Plot

1
2
3
4
5
6
7
8
plt.figure(figsize=(14,6))

plt.title("Daily Global Streams of Popular Songs in 2017-2018")

sns.lineplot(data=spotify_data['Shape of You'], label="Shape of You")
sns.lineplot(data=spotify_data['Despacito'], label="Despacito")

plt.xlabel("Date")

# Bar Plot

1
2
3
4
plt.figure(figsize=(14,7))

sns.barplot(x=flight_data.index, y=flight_data['NK'])
plt.ylabel("Arrival delay (in minutes)")

# Heatmaps

1
sns.heatmap(data=flight_data, annot=True)

# Scatter Plot

1
2
3
4
5
6
7
# color by smoker categorical data
sns.scatterplot(x=insurance_data['bmi'], y=insurance_data['charges'], hue=insurance_data['smoker'])

# add regression line
sns.regplot(x=insurance_data['bmi'], y=insurance_data['charges'])
# colored by smoker categorical data, create 2 regression line
sns.lmplot(x="bmi", y="charges", hue="smoker", data=insurance_data)

# Categorical Scatter Plot

1
2
3
4

# smoker=category, charges=numeric
sns.swarmplot(x=insurance_data['smoker'],
              y=insurance_data['charges'])

# Histogram

1
sns.histplot(data=iris_data, x='Petal Length (cm)', hue='Species')

# KDE (Kernel Density Estimation) Plot

smoothed histogram

1
sns.kdeplot(data=iris_data, x='Petal Length (cm)', hue='Species', shade=True)

# 2D KDE (Kernel Density Estimation) Plot

1
sns.jointplot(x=iris_data['Petal Length (cm)'], y=iris_data['Sepal Width (cm)'], kind="kde")