Search
Search Icon Icon to open search ds-plotting Last updated
Nov 23, 2022
# Read csv# Plotting in notebook setup1
2
3
4
5
import pandas as pd
pd . plotting . register_matplotlib_converters ()
import matplotlib.pyplot as plt
% matplotlib inline
import seaborn as sns
# Define Your Viz GoalsTrends: lineplot Relationship: scatterplot, lmplot, regplot, heatmap, swarmplot Distribution: histogram, kde, 2d kde Compare values: barplot # Plot Option Based on Data Typesdate time + multiple variable: line plot 1 numeric: histogram, kde 1 numeric multiple categorical: histogram 2 numeric: scatterplot, 2d kde 2 numeric + 1 categorical: scatterplot, lm regression plot 1 categorical + 1 numeric: barplot, swarmplot 2 categorical + 1 numeric: histogram, kde, barplot, heatmaps # Line Plot1
2
3
4
5
6
7
8
plt . figure ( figsize = ( 14 , 6 ))
plt . title ( "Daily Global Streams of Popular Songs in 2017-2018" )
sns . lineplot ( data = spotify_data [ 'Shape of You' ], label = "Shape of You" )
sns . lineplot ( data = spotify_data [ 'Despacito' ], label = "Despacito" )
plt . xlabel ( "Date" )
# Bar Plot1
2
3
4
plt . figure ( figsize = ( 14 , 7 ))
sns . barplot ( x = flight_data . index , y = flight_data [ 'NK' ])
plt . ylabel ( "Arrival delay (in minutes)" )
# Heatmaps1
sns . heatmap ( data = flight_data , annot = True )
# Scatter Plot1
2
3
4
5
6
7
# color by smoker categorical data
sns . scatterplot ( x = insurance_data [ 'bmi' ], y = insurance_data [ 'charges' ], hue = insurance_data [ 'smoker' ])
# add regression line
sns . regplot ( x = insurance_data [ 'bmi' ], y = insurance_data [ 'charges' ])
# colored by smoker categorical data, create 2 regression line
sns . lmplot ( x = "bmi" , y = "charges" , hue = "smoker" , data = insurance_data )
# Categorical Scatter Plot1
2
3
4
# smoker=category, charges=numeric
sns . swarmplot ( x = insurance_data [ 'smoker' ],
y = insurance_data [ 'charges' ])
# Histogram1
sns . histplot ( data = iris_data , x = 'Petal Length (cm)' , hue = 'Species' )
# KDE (Kernel Density Estimation) Plotsmoothed histogram
1
sns . kdeplot ( data = iris_data , x = 'Petal Length (cm)' , hue = 'Species' , shade = True )
# 2D KDE (Kernel Density Estimation) Plot1
sns . jointplot ( x = iris_data [ 'Petal Length (cm)' ], y = iris_data [ 'Sepal Width (cm)' ], kind = "kde" )